情绪分析
模型基本信息¶
对话情绪识别(Emotion Detection,简称 EmoTect)专注于识别智能对话场景中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。该模型基于TextCNN(多卷积核 CNN 模型),能够更好地捕捉句子局部相关性。
样本结果示例¶
["今天天气真好", "湿纸巾是干垃圾", "别来吵我"]
[
    {
        "text": "今天天气真好",
        "emotion_label": 2,
        "emotion_key": "positive",
        "positive_probs": 0.9267,
        "negative_probs": 0.0019,
        "neutral_probs": 0.0714
    },
    {
        "text": "湿纸巾是干垃圾",
        "emotion_label": 1,
        "emotion_key": "neutral",
        "positive_probs": 0.0062,
        "negative_probs": 0.0042,
        "neutral_probs": 0.9896
    },
    {
        "text": "别来吵我",
        "emotion_label": 0,
        "emotion_key": "negative",
        "positive_probs": 0.0732,
        "negative_probs": 0.7791,
        "neutral_probs": 0.1477
    }
]
现在就来试试吧
先决条件¶
1、环境依赖¶
请访问 依赖项
2、emotion_detection_textcnn 依赖¶
-  
paddlepaddle >= 1.8.0
 -  
paddlehub >= 1.8.0
 
3、下载模型¶
hub install emotion_detection_textcnn
服务模型¶
安装 Pinferencia¶
首先,让我们安装 Pinferencia。
pip install "pinferencia[streamlit]"
创建 app.py¶
让我们将我们的预测函数保存到一个文件 app.py 中并添加一些行来注册它。
| app.py | |
|---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  |  | 
运行服务,等待它加载模型并启动服务器:
$ uvicorn app:service --reload
INFO:     Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO:     Started reloader process [xxxxx] using statreload
INFO:     Started server process [xxxxx]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
$ pinfer app:service --reload
Pinferencia: Frontend component streamlit is starting...
Pinferencia: Backend component uvicorn is starting...
测试服务¶
打开http://127.0.0.1:8501,模板 Raw Request 会自动选中。

请求
curl --location --request POST \
    'http://127.0.0.1:8000/v1/models/emotion_detection_textcnn/predict' \
    --header 'Content-Type: application/json' \
    --data-raw '{
        "data": ["今天天气真好", "湿纸巾是干垃圾", "别来吵我"]
    }'
响应
{
    "model_name": "emotion_detection_textcnn",
    "data": [
        {
            "text": "今天天气真好",
            "emotion_label": 2,
            "emotion_key": "positive",
            "positive_probs": 0.9267,
            "negative_probs": 0.0019,
            "neutral_probs": 0.0714
        },
        {
            "text": "湿纸巾是干垃圾",
            "emotion_label": 1,
            "emotion_key": "neutral",
            "positive_probs": 0.0062,
            "negative_probs": 0.0042,
            "neutral_probs": 0.9896
        },
        {
            "text": "别来吵我",
            "emotion_label": 0,
            "emotion_key": "negative",
            "positive_probs": 0.0732,
            "negative_probs": 0.7791,
            "neutral_probs": 0.1477
        }
    ]
}
创建test.py。
| test.py | |
|---|---|
1 2 3 4 5 6 7 8  |  | 
$ python test.py
{
    "model_name": "emotion_detection_textcnn",
    "data": [
        {
            "text": "今天天气真好",
            "emotion_label": 2,
            "emotion_key": "positive",
            "positive_probs": 0.9267,
            "negative_probs": 0.0019,
            "neutral_probs": 0.0714
        },
        {
            "text": "湿纸巾是干垃圾",
            "emotion_label": 1,
            "emotion_key": "neutral",
            "positive_probs": 0.0062,
            "negative_probs": 0.0042,
            "neutral_probs": 0.9896
        },
        {
            "text": "别来吵我",
            "emotion_label": 0,
            "emotion_key": "negative",
            "positive_probs": 0.0732,
            "negative_probs": 0.7791,
            "neutral_probs": 0.1477
        }
    ]
}
更酷的是,访问 http://127.0.0.1:8501,您将拥有一个交互式UI。
您可以在那里发送预测请求!