图像识别
在本教程中,我们将探讨如何使用 Hugging Face 管道,以及如何使用 Pinferencia 作为 REST API 部署它。
先决条件¶
请访问 依赖项
下载模型并预测¶
模型将自动下载。
1 2 3 4 5 6 |
|
结果:
[{'label': 'lynx, catamount', 'score': 0.4403027892112732},
{'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
'score': 0.03433405980467796},
{'label': 'snow leopard, ounce, Panthera uncia',
'score': 0.032148055732250214},
{'label': 'Egyptian cat', 'score': 0.02353910356760025},
{'label': 'tiger cat', 'score': 0.023034192621707916}]
让我们尝试另一个图像,让我们尝试在一批中预测两个图像:
1 2 3 4 |
|
结果:
[[{'score': 0.9489120244979858, 'label': 'macaw'},
{'score': 0.014800671488046646, 'label': 'broom'},
{'score': 0.009150494821369648, 'label': 'swab, swob, mop'},
{'score': 0.0018255198374390602, 'label': "plunger, plumber's helper"},
{'score': 0.0017631321679800749,
'label': 'African grey, African gray, Psittacus erithacus'}],
[{'score': 0.9489120244979858, 'label': 'macaw'},
{'score': 0.014800671488046646, 'label': 'broom'},
{'score': 0.009150494821369648, 'label': 'swab, swob, mop'},
{'score': 0.0018255198374390602, 'label': "plunger, plumber's helper"},
{'score': 0.0017631321679800749,
'label': 'African grey, African gray, Psittacus erithacus'}]]
出乎意料的容易! 现在让我们试试:
部署模型¶
没有部署,机器学习教程怎么可能完整?
首先,让我们安装 Pinferencia。
pip install "pinferencia[uvicorn]"
现在让我们用代码创建一个 app.py
文件:
app.py | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 |
|
容易,对吧?
预测¶
curl --location --request POST 'http://127.0.0.1:8000/v1/models/vision/predict' \
--header 'Content-Type: application/json' \
--data-raw '{
"data": "https://cdn.pixabay.com/photo/2018/08/12/16/59/parrot-3601194_1280.jpg"
}'
结果:
Prediction: [
{'score': 0.433499813079834, 'label': 'lynx, catamount'},
{'score': 0.03479616343975067, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'},
{'score': 0.032401904463768005, 'label': 'snow leopard, ounce, Panthera uncia'},
{'score': 0.023944756016135216, 'label': 'Egyptian cat'},
{'score': 0.022889181971549988, 'label': 'tiger cat'}
]
test.py | |
---|---|
1 2 3 4 5 6 7 8 9 |
|
运行 python test.py
,查看结果:
Prediction: [
{'score': 0.433499813079834, 'label': 'lynx, catamount'},
{'score': 0.03479616343975067, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'},
{'score': 0.032401904463768005, 'label': 'snow leopard, ounce, Panthera uncia'},
{'score': 0.023944756016135216, 'label': 'Egyptian cat'},
{'score': 0.022889181971549988, 'label': 'tiger cat'}
]
更酷的是,访问 http://127.0.0.1:8000,您将拥有一个交互式 ui。
您可以在那里发送预测请求!
进一步改进¶
但是,有时使用图像的 url 来预测是不合适的。
让我们稍微修改 app.py
以接受 Base64 Encoded String
作为输入。
app.py | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
再次预测¶
curl --location --request POST 'http://127.0.0.1:8000/v1/models/vision/predict' \
--header 'Content-Type: application/json' \
--data-raw '{
"data": "..."
}'
结果:
Prediction: [
{'score': 0.433499813079834, 'label': 'lynx, catamount'},
{'score': 0.03479616343975067, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'},
{'score': 0.032401904463768005, 'label': 'snow leopard, ounce, Panthera uncia'},
{'score': 0.023944756016135216, 'label': 'Egyptian cat'},
{'score': 0.022889181971549988, 'label': 'tiger cat'}
]
test.py | |
---|---|
1 2 3 4 5 6 7 8 9 |
|
运行 python test.py
并查看结果:
Prediction: [
{'score': 0.433499813079834, 'label': 'lynx, catamount'},
{'score': 0.03479616343975067, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'},
{'score': 0.032401904463768005, 'label': 'snow leopard, ounce, Panthera uncia'},
{'score': 0.023944756016135216, 'label': 'Egyptian cat'},
{'score': 0.022889181971549988, 'label': 'tiger cat'}
]